The automated DLE optimizer for LM2500(+) & LM6000

AutoTune DLE: optimized engine efficiency within emission limits during part load operation

VBR / Danny Grobbe – Senior Project Engineer / 2023

Content

- 1. About VBR Turbine Partners
- 2. AutoTune DLE: a joint technology development
- 3. What is AutoTune DLE?
- 4. How does AutoTune DLE work?
- 5. Emissions: the combustion dynamics balance
- 6. DLE tuning and operating windows
- 7. How does AutoTune DLE optimize all emissions?
- 8. AutoTune DLE the machine learning process
- 9. How does AutoTune DLE realize higher efficiency?
- 10. Customer example of efficiency improvement
- 11. Customer example of fuel gas savings and CO₂ avoidance savings on a LM2500 DLE
- 12. Summary

- 13. Deliverables of AutoTune DLE
- 14. Installation specifications and a requirement
- 15. AutoTune DLE demonstration setup and customer cost savings calculator
- 16. Learn more about AutoTune DLE?

About VBR Turbine Partners

An independent competence centre for:

- LM2500 (+,DLE)
- LM6000 (PA PH)
- **TM2500 (+)**

One-stop full-service **on-site maintenance experts** for LM gas turbines, control systems, auxiliary systems and enclosures.

Key company characteristics:

- Customer focused
- Responsive
- Flexible

AutoTune DLE: a joint technology development

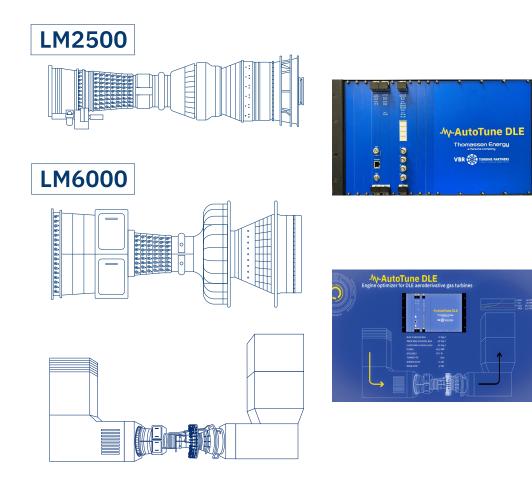
AutoTune DLE is a **joint technology development** by VBR Turbine Partners, Thomassen Energy and PSM

AutoTune DLE is based on the patented **AutoTune** technology developed by **PSM** in the USA as a cross-platform solution for **optimizing the combustion** of many Heavy-Duty types of gas turbines:

AutoTune is proven technology: over 100 AutoTune systems in operation worldwide since 2010

4

What is AutoTune DLE?

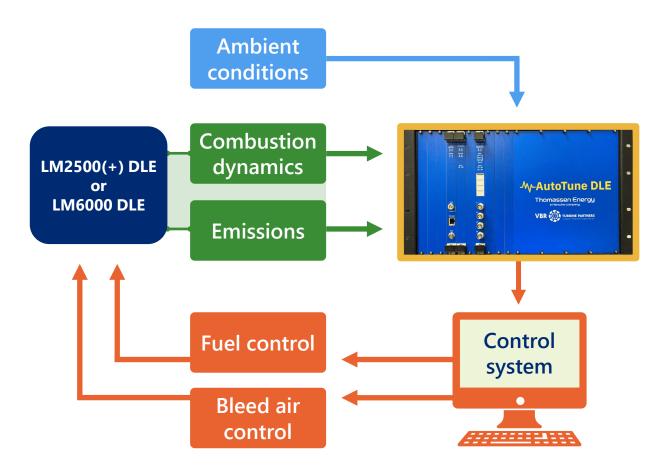

The **automated** engine efficiency **optimizer** for **LM2500** & **LM6000** DLE **in part load operation**.

AutoTune DLE is **real-time empirical** combustion-based engine **efficiency optimization**, not model-based (digital twin etc.) engine efficiency optimization.

It consists of **a stand-alone smart solution box** that connects to the control system of a LM gas turbine in order to provide **continuous efficiency optimization** during **part load operation**.

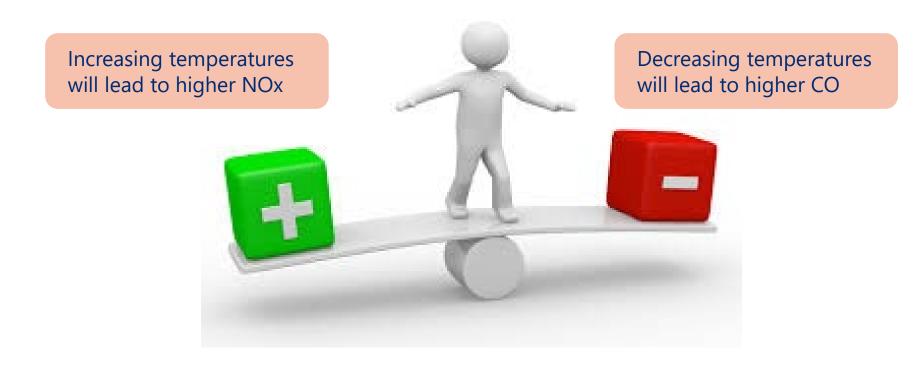
This is an add-on to your existing LM installation that does not interfere with control system settings, day-to-day operation or engine maintenance schedules.

Therefore AutoTune DLE is **instantly appliccable** on any LM2500 DLE or LM6000 DLE installation that operates in part load (for at least part of the time).



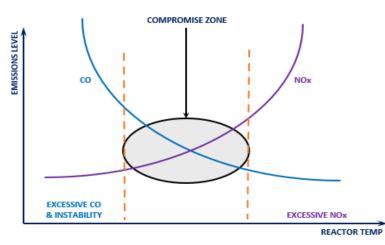
How does AutoTune DLE work?

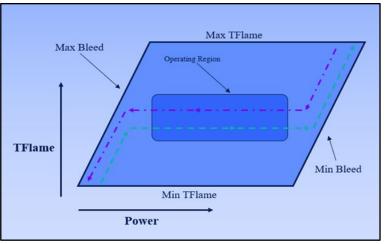
AutoTune DLE **automatically optimizes gas turbine combustion** during part load operation by continuously and carefully balancing:


- Fuel gas
- Bleed air
- Combustion dynamics
- Emissions

in a closed loop to achieve optimum combustion efficiency all of the time.

Emissions: the combustion dynamics balance

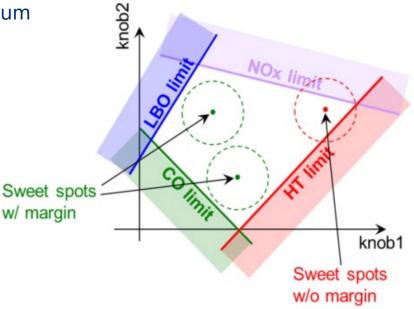

7 AutoTune DLE: optimized engine efficiency for LM2500(+) & LM6000 during part load operation



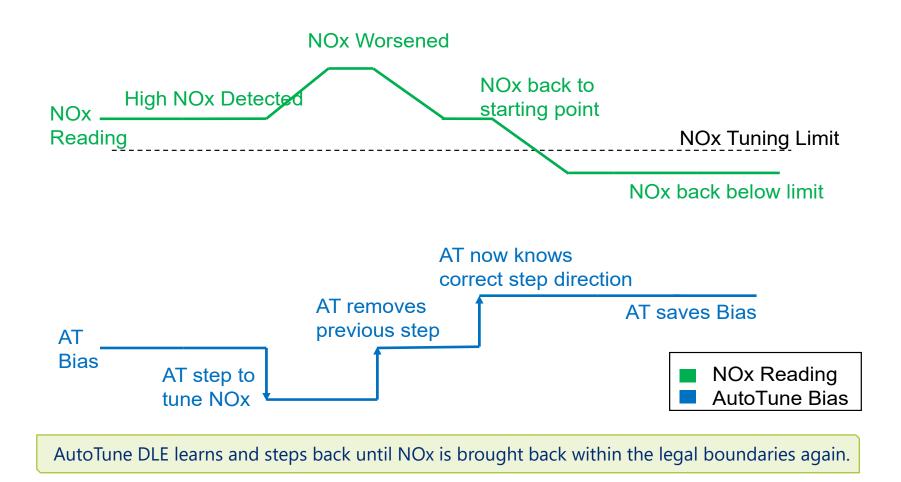
DLE tuning and operating windows

Combustion and emissions optimizing is only possible within the allowed operating windows.

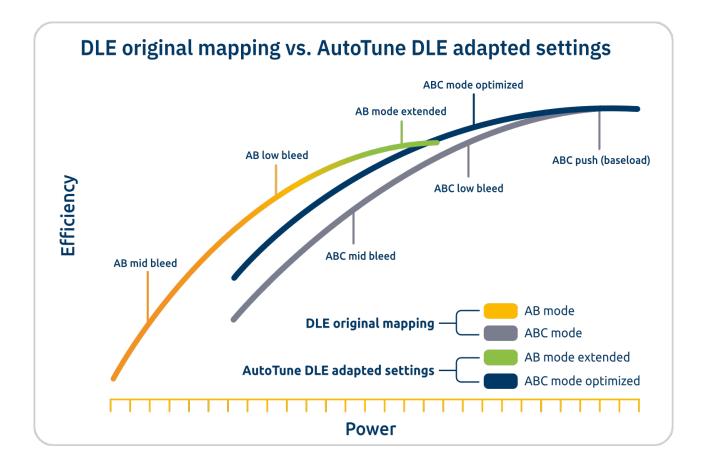
Each tuning window is defined by maximum and minimum bulk flame temperature and compressor bleeds.



How does AutoTune DLE optimize all emissions?


AutoTune DLE automatically tunes to keep emissions within the legal boundaries.

- AutoTune DLE will continuously process & communicate the appropriate ring flame temperature adjustments to the SpeedTronic or Woodward control system.
- Over time AutoTune DLE will remember and reuse all previously found optimum settings for any combination of inlet conditions and engine load.
- AutoTune DLE applies a machine learning algorithm:
 - This algorithm learns from the specific LM engine on which it is implemented. The operation is continuously and automatically optimized for the individual combustion behavior of each engine.
 - Flame temperature adjustments are stored across all varying ambient conditions and all other parameters for immediate availability when similar conditions are detected in the future.


AutoTune DLE - the machine learning process

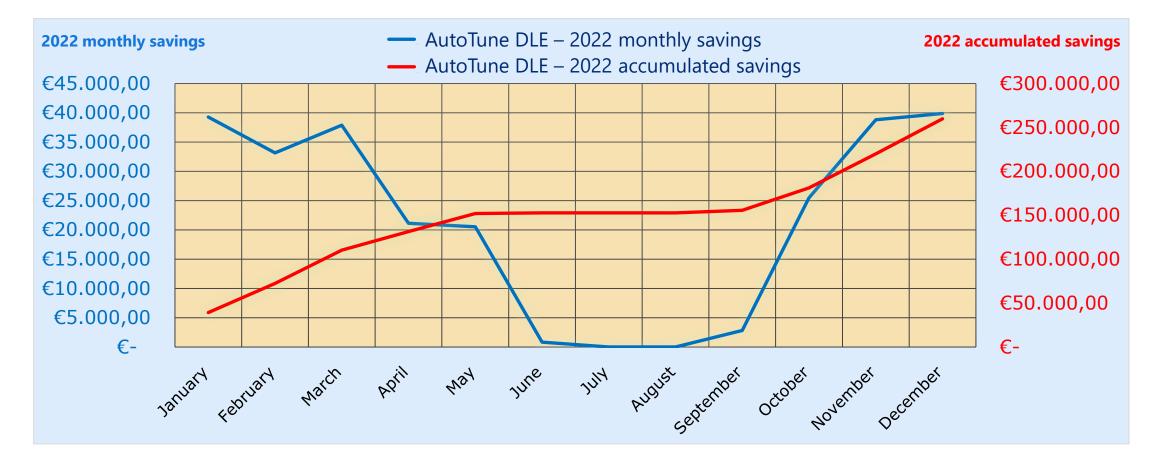
How does AutoTune DLE realize higher efficiency?

- Stretches the AB window when staging up from AB to ABC mode (runs longer with 0% bleed in AB mode).
- In staging down from ABC to AB mode avoids high-bleed operation in ABC.
- In ABC mode reduces compressor bleed as much as possible.

Customer example of efficiency improvement on a LM2500 DLE

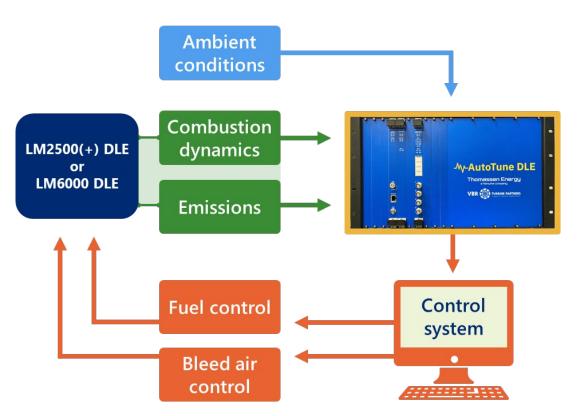
Gas Data

Gas Price	€ 0,95	Nm³/h
Gas Price	€ 95,00	MWh
Caloric Value	20531	BTU
Specific Gravity	0,601	SG
MegaJoule per cubic meter	36,04	MJ/Nm³
MegaWatt per Hour	0,010012	MWh
Gas Price	€ 95,00	MWh


Mapping verified data - LM2500 DLE in burner mode ABC

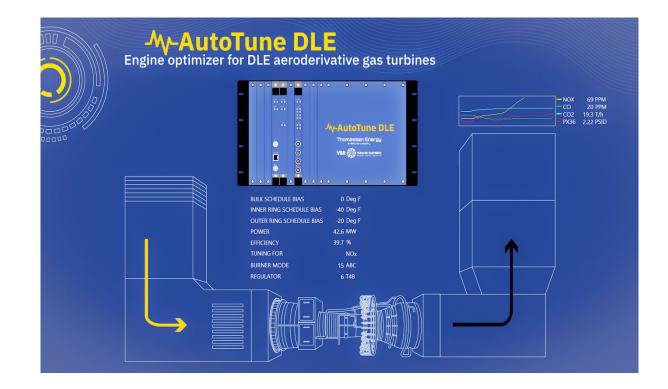
Ambient	Load	Fuel & Bleed			Fuel			Efficiency		
Temp DegC	MW	PPH	Bleed %	Kg/h	Kg/sec	BTU/lb	kJ/kg	Gj/h	Nm³/h	%
10,50	18,44	9404,20	33,52%	4265,67	1,18	20533,17	47760,15	203,73	5792,04	32,58%
10,50	18,43	9223,51	23,89%	4183,71	1,16	20529,82	47752,36	199,78	5679,83	33,21%
Efficiency increase LM2500 DLE in burner mode ABC with AutoTune DLE										
Temp DegC	MW	PPH	Bleed %	Kg/h	Kg/sec	BTU/lb	kJ/kg	Gj/h	Nm ³ /h	%
0,00	0,01	180,69	9,63%	81,96	0,02	3,35	7,79	3,95	112,21	+0,63%

Customer example of fuel gas savings & CO₂ avoidance savings on a LM2500 DLE



13 AutoTune DLE: optimized engine efficiency for LM2500(+) & LM6000 during part load operation

Summary


- AutoTune DLE is real-time empirical combustionbased engine efficiency optimization, not modelbased engine efficiency optimization.
- AutoTune DLE reduces the amount of bleed air in the ABC combustion mode during part load operation.
- Less bleed air results in higher engine efficiency in the ABC combustion mode during part load operation.
- Higher engine efficiency results in lower fuel consumption and lower CO₂ emissions in the ABC combustion mode during part load operation.

Deliverables of AutoTune DLE

- At least 0,5% fuel cost savings at required part-load power output *
- At least 0,5% CO₂ avoidance savings at required part-load power output *
- Improved **operability** by active engine stabilization / high acoustics protection
- NOx and CO emissions in full compliance with legal requirements
- Enhanced **fuel flexibility** (enables mixing in a higher % of renewable fuels)
- Improved availability (eliminates production loss of seasonal DLE tuning)

* Your expected fuel cost savings and CO₂ emission savings can be calculated with your own operation data.

Installation specifications and a requirement for AutoTune DLE

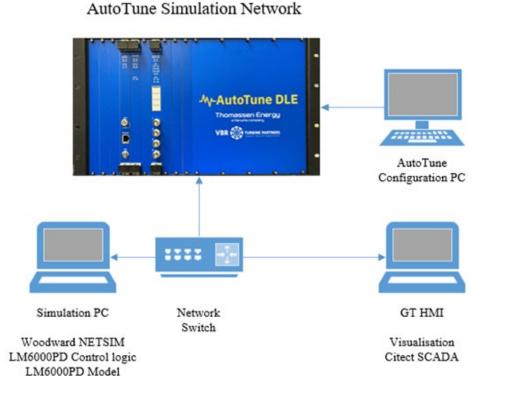
Specifications

A 19" stand-alone box

(Containing the 2nd generation AutoTune platform including a combustion dynamics measuring system and digital processing capabilities)

- Hardwired connections with the controls cabinet and the vibration panel
- Modbus connection between the controls cabinet and the AutoTune DLE box

Back-up / fall back in the controls logic programming


Requirement

A continuous emission monitoring system (CEMS) to provide real-time emission data to the AutoTune DLE box

AutoTune DLE demonstration setup and customer cost savings calculator

17 AutoTune DLE: optimized engine efficiency for LM2500(+) & LM6000 during part load operation

Learn more about AutoTune DLE?

To learn more about the AutoTune DLE automated efficiency optimizer for LM2500(+) and LM6000 DLE just ask any of our VBR booth staff members ③

AutoTune DLE contact email address:

competencecentre@vbr-turbinepartners.com

